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ABSTRACT: To go ahead in understanding the nature of
rubber reinforcement and evaluate the kinetics of filler
clusters destruction during stretching of filled rubber, the
styrene-butadiene rubber both unfilled and filled with var-
ious contents of silica particles with and without surface
treatment was tested under quasistatic loading up to fail-
ure. The Klueppel–Schramm model was used for descrip-
tion of strain softening, evaluation of both the rubber and
filler network parameters as the functions of the filler vol-
ume content. It was found that an elastic modulus as a
function of filler volume content follows Guth–Gold equa-
tion, confirming the hydrodynamic nature of the rubber
reinforcement; the effectiveness factor depends on filler

surface treatment. Hydrodynamic amplification factor
increases with increase of filler volume content, its value
depends on filler particles surface treatment. The decrease
of hydrodynamic amplification factor during stretching
correlates with the increase of viscoelastic strain. Taking
into account the viscoelastic strain improves the descrip-
tion of the stress–strain response of filled rubber for load-
ing–unloading process with the parameters obtained for
active loading. VC 2011 Wiley Periodicals, Inc. J Appl Polym Sci
123: 1621–1629, 2012
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INTRODUCTION

The incorporation of small size particle fillers, such
as carbon black or silica, to elastomeric networks
(‘‘filled rubber’’) produces a well known reinforce-
ment effect1: the static shear or tensile modulus can
be enhanced by nearly two orders of magnitude,
and resistance to tear and abrasion is also noticeably
improved. Reinforcement is thought to arise from
the combination of the ‘‘hydrodynamic’’ effect, rub-
ber-filler interactions, and long-range Van der Waals
or short-range ‘‘contact’’ interactions between the fil-
ler particles. The interactions forces in filled rubber
change under action of external loads: it results in
reversible and irreversible changes of composite
structure and properties, including deformational
and strength properties. Depending on the load(s)
application rates (quasistatic or dynamic loading)
the irreversible changes of structure are reflected in
Mullins2 or Payne3 effects, respectively.

The Mullins effect (called also stress or stretch-
induced softening, or damage induced stress soften-

ing, or cyclic softening) is a reduction in stress of
filled elastomers after the initial extension under
repeated tensile strain. It is examined in constant
strain rate tests under cyclic loading. The effect is
mainly associated with a more compliant response
of a prestretched material than that of the virgin ma-
terial; the larger prior stretch ratio gives a greater
softening of the response upon reloading. A qualita-
tive review on the literature dedicated to the Mullins
effect over past six decades was done in.4

The Payne effect is observed in the dynamic tests
under cyclic loading conditions with small strain
amplitudes and referred to a dependence of the
viscoelastic storage modulus on the applied strain
amplitude.
The Mullins and Payne effects have been the sub-

ject of numerous theories which can be more or less
classified in two main types: (i) filler structure mod-
els, (ii) rubber-filler bonding and debonding models.
The existence of two different pictures of the phe-
nomena is directly related to the nanoscopic size of
filler for which it is impossible to neglect either fil-
ler–filler interaction (with or without involvement of
the matrix) or the rubber–filler interaction.
In the filler structure models, the filler–filler inter-

actions are considered as predominant. Payne
believed3 that dependence of the moduli with strain
is essentially determined by the agglomeration and
de-agglomeration of the filler network. In the case of
carbon black filled elastomers, above the percolation
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threshold, when the filler particles come close to-
gether, the presence of filler network can be evi-
denced by electrical conductivity measurements. The
rigidity of the structure depends on the rigidity of
the filler–filler bonds. It is assumed that this filler
network is damaged by application of a strain of
sufficient magnitude that leads to the loss of rigidity.
In case of silica filled elastomer, namely styrene-
butadiene rubber (SBR), the breakdown of the filler
aggregates with an increase of strain was success-
fully detected by transmission electron microscope
(TEM).5

The second set of models assumes that the rub-
ber–filler interactions are responsible for the Payne
effect.6 These models are based on the idea of
adsorbed polymer at the filler surface (bound rub-
ber) that displays a decreased molecular mobility
and may act as supplementary crosslinks in the ma-
terial. Then, under an increase of strain, a mecha-
nism of adhesion and de-adhesion of polymer chain
at the filler interface is proposed. The idea was con-
firmed by the use of electron spin resonance (ESR)
technique to register the chain scissions of rubber
molecules during stretching of silica filled SBR with
filler particles treated by various coupling agents.7

ESR results suggested that the degree of chain scis-
sion in silica filled SBR increased with increasing the
mechanical energy applied to the samples during
deformation.

Even in the adoption of the first type models the
coupling of the filler to the matrix cannot be disre-
garded suggesting that filler–filler bonds in the filler
network are probably made via an adsorbed layer of
polymer onto the filler surface. Moreover, filler par-
ticles in aggregates can immobilize a nonvulcanized
rubber since they prevent migration of this bound
rubber into a surrounding solvent. The existence of
entrapped rubber within the agglomerate was sug-
gested by the TEM image analysis.5 The amount
seems to decrease with the decrease in agglomerate
size. A part of the entrapped rubber might be real-
ized when the filler network was broken by the
strain.

In contrast to a rubbery state of the main part of
matrix, the bound rubber in the interlayer may be in
a glassy state. Above the percolation threshold, such
layers can join creating glassy regions. If so, the
mechanical behavior of filled rubbers should be
typically viscoelastic exhibiting rate and temperature
dependences, as well as dependence of the compos-
ite mechanical properties on treatment of the filler
particle surface by coupling agent.

Taking into account the necessity of studying of at
least two types of interactions in filled elastomers, a
systematic experimental study of rubber both
unfilled and filled with various filler volume con-
tents, with and without treatment of filler particles

surface is essential. This will give an insight into the
mechanisms by which small size particles produce
mechanical reinforcement in polymers above their
glass transition temperature. To this purpose, the
mechanical behavior of model composite under qua-
sistatic loading up to failure, cyclic loading–unload-
ing, and creep with different load levels was investi-
gated. To evaluate the viscoelastic properties, the
first part of the investigation was devoted to the
analysis of creep and creep recovery test results.8

This allowed us to describe the response to loading–
unloading cycles with constant stretch ratio starting
from the second cycle, i.e., after the Mullins effect
was removed. In the present article, to find out the
matrix and filler network parameters as functions of
filler volume content and evaluate the changes of fil-
ler network structure during stretching of the mate-
rial, the stress–stretch ratio curves up to failure are
analyzed by using the mechanical model proposed
in the literature. The effect of viscoelasticity on the
response to first loading–unloading cycle, i.e., Mul-
lins effect, is also considered.

MATERIALS AND TESTS

The material under investigation was SBR: unfilled
and filled with silica particles without and with sur-
face treatment by silane SI69 coupling agent. Filler
volume contents for both series were approximately
the same: c ¼ 0.0898, 0.1411, and 0.208—for filler
particles without surface treatment, and c ¼ 0.0886,
0.1382, and 0.2018—for filler particles with surface
treatment. Dumbbell test samples were cut from
rubber sheets, whose thickness varied from 1.2 to 2
mm depending on material composition.
Uniaxial tension tests up to failure of the samples

were performed on a universal testing machine
Zwick 2.5, equipped with a load cell of 2.5 kN, at a
constant crosshead speed of 5 mm/min, which cor-
responded to a nominal strain rate of 0.00333 s�1.
The samples were preloaded to 0.5 N to avoid
bending.
Uniaxial cyclic tests: three loading–unloading

cycles with increasing maximal stretch ratio of 0.25,
0.5 and 0.75 of ultimate were also performed at a
constant crosshead speed of 50 mm/min, which cor-
responded to a nominal strain rate of 0.0333 s�1.
Three to six samples of each composition were

tested to get a repeatability of data. All tests were
performed under laboratory conditions at an average
temperature of 22�C.
The operative part of the samples, that is the part

with maximum and uniform deformation, had a
length of 20 mm and a width of 5 mm. This zone
was delimited by white markers: two in the tension
(axial) direction and two in the transversal (lateral)
one. Markers in the thickness direction were also
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drawn on some samples. The displacements, which
are proportional to the nominal strains, were regis-
tered by a high-resolution camera. Handling of photo
images and evaluation of displacements was per-
formed by using special software elaborated at the
Institute of Polymer Mechanics developed in Cþþ on
a platform.NET for Windows XP.9 By using this non-
contact method, it was possible to take into considera-
tion displacements in operative part of the samples.

The lateral displacements in the width direction
were measured for all samples. Measurements in the
thickness direction were obtained for one sample of
each composition and it was found for them that k2
¼ k3. Based on these data, the stretch field was
assumed to be homogeneous in the operative part of
each sample. Based on previous work,10 it is
assumed that the material is absolutely incompressi-
ble up to the stretch ratio equal to 4.5.

The experimental stress–stretch ratio curves of rub-
ber both unfilled and filled are shown in Figure 1. It
can be seen from the graphs that filling of the rubber
noticeably raises its rigidity, strength, and stretch ratio
at failure. Stress–stretch ratio curves of filled rubber
are nonlinear: a convexity of each curve is replaced
by concavity, revealing a point of inflection. The
stress–stretch ratio curve of unfilled rubber is convex.
Comparing the graphs in Figure 1(a,b), one can see
that two series of composites: filled with particles
without and with surface treatment exhibit different
deformational and strength properties at the same fil-
ler volume content. For small filler volume content, c
� 0.09, the former composite reveals smaller strength
comparing to the latter. For larger filler volume con-
tents, c � 0.14 and 0.2, the former composite reveals
smaller rigidity but larger strength and considerably
larger stretch ratio at failure than the latter.

As an example of cyclic loading–unloading test
results, the stress–stretch ratio curves of filled rubber
with filler volume contents c � 0.2 and 0.09 for
untreated and treated surface of filler particles,

respectively, are shown in Figure 2. The Mullins
effect is obvious: a stretch-induced softening appears
for stretch ratio lower or equal to the maximal
stretch ratio ever attained. When the stretch ratio
exceeds the maximal previously attained, the mate-
rial stress–strain response returns on the same path
as the monotonous uniaxial stress–strain response
after a transition, which increases with the amount
of stretch ratio. The degree of softening increases
progressively with increasing maximal stretch ratio.
For both types of the composites: without and

with filler particles surface treatment, the hysteresis
loops decrease with decrease in the filler volume
content and disappear for neat rubber.

THE KLUEPPEL–SCHRAMM MODEL OF
ELASTICITY OF FILLER REINFORCED

ELASTOMERS

The problem of obtaining a sufficiently general
description of the stress–strain relation of rubber-like
networks was investigated in numerous articles and
was approached from both the phenomenological and
molecular points of view. One of the surveys is pre-
sented in Ref. 11. The molecular point of view is pref-
erable, as it allows description of the mechanical test
results in terms of structure parameters, evaluation of
the kinetics of their changes up to the composite fail-
ure, and determination of the rupture criteria.
Most attractive is a constitutive model of hypere-

lasticity and stress softening of filler reinforced poly-
mer networks based on a molecular statistical theory
of rubber elasticity12 and a micro-mechanical con-
cept of filler cluster failure in the deformed elasto-
mer composites.13,14 With its use, a good description
of uniaxial stress–stretch ratio dependences of filler
reinforced elastomeric networks both virgin and af-
ter prestrain is possible.4,14–16

The nonlinear elastic response of stretched poly-
mer networks is described by a tube model of

Figure 1 Stress–stretch ratio curves (up to failure) of rubber filled with various filler volume contents c for (a) untreated
and (b) treated filler particles surface; dots are experimental data, lines are approximation by eqs. (3), (4), (6), and (7). For
(a) c ¼ 0.0898 (~), 0.141 (~), 0.208 (h); for (b) c ¼ 0 (*), 0.0886 (~), 0.1382 (~), 0.2018 (h).
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rubber elasticity.12,13 In this model, it is assumed
that the network chains in a highly entangled poly-
mer network are heavily restricted in their fluctua-
tions due to packing effects. These restrictions are
described by virtual tubes around network chains.
When the network elongates, the tubes deform less
than affinely with a deformation exponent v ¼ 1/2.
It means that the tube radius rl in spatial direction l
of the main axes system depends on the stretch ratio
kl as follows

rl ¼ r0k
v
l; (1)

where r0 is the tube radius in the nondeformed
state.

The nonaffine tube model was originally derived
for the case of Gaussian chain statistics.12,13 For large
strains, Klueppel and Schramm14 took into account
that the network chains have a finite length, and
stress in the network becomes infinitely large, when
the chains between two subsequent network junc-
tions are stretched fully. Then, the free energy den-
sity of the extended, non-Gaussian tube model with
nonaffine tube deformation is defined as

WR ¼ Gc

2

( P3
l¼1 k

2
l � 3

� �
1� Te

ne

� �
1� Te

ne

P3
l¼1 k

2
l � 3

� �
þ ln 1� Te

ne

X3

l¼1
k2l � 3

� �� �)

þ 2Ge

X3

l¼1
k�1
l � 3

� �
: (2)

The first bracket term of eq. (2) describes the con-
straints due to interchain junctions with an elastic
modulus Gc proportional to the density of network
junctions, i.e., crosslinks and trapped entanglements.
The second addend considers the topological tube
constraints, whereby Ge is proportional to the entan-
glement density of the rubber. The parenthetical
expression in the first addend takes into account the

finite chain extensibility.13 For the limiting case,
ne
Te
¼P3

l¼1 k
2
l � 3, the free energy density, eq. (2),

exhibits a singularity, which is reached when the
chains between successive trapped entanglements are
stretched fully. Here, ne is the number of statistical
chain segments between two subsequent entangle-
ments and Te is the trapping factor (0 < Te < l), which
characterizes the portion of elastically active entangle-
ments. Te increases as the crosslink density increases,
whereas ne as term that is specific to polymer is to a
great extent independent on crosslink density.
For uniaxial extension, l ¼ 1, k1 ¼ k, of incom-

pressible material k2 ¼ k3 ¼ k�1=2, the following rela-
tion for the nominal stress r ¼ @WR

@k has been derived
from eq. (2):

r ¼ Gc
1� d

ð1� dImÞ2
� d

1� dIm

 !
k� k�2
� �

þ 2Ge k�1=2 � k�2
� �

; (3)

where Im ¼ k2 þ 2
k � 3, d ¼ Te=ne.

Equation (3) applies to homogeneous unfilled rub-
ber networks. It was shown to give a very good
description of uniaxial stress–stretch ratio dependen-
ces up to high strains obtained for a variety of cross-
link concentrations in natural rubber networks.
The presence in a soft highly deformable rubbery

matrix of hard and much less deformable filler par-
ticles leads to a hydrodynamic effect: the required
macroscopic (external) strain, e, is achieved with the
microscopic (internal) strain in the elastomeric ma-
trix, eint, being higher than e. The hydrodynamic
reinforcement refers to a strain-amplification factor

X ¼ eint=e; (4)

which describes the excessive strain of the polymer
chains due to the presence of rigid filler particles.
The internal (microscopic) stretch ratio is assumed to
be amplified to kint ¼ 1þ eint ¼ 1þ Xe. This quantity

Figure 2 Stress as a function of stretch ratio for three loading–unloading cycles of rubber filled with surface untreated
(a) and treated (b) particles for c ¼ 0.208 and 0.1382, respectively; solid lines are experimental data, dotted lines are calcu-
lation by eqs. (3), (4), (6), and (7). [Color figure can be viewed in the online issue, which is available at
wileyonlinelibrary.com.]
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should be inserted for k in eq. (3) to calculate the in-
ternal first strain invariant, or Im, and the macroscopic
stress observed at a macroscopic (external) strain e.
External stretch ratio is defined as k ¼ 1 þ e.

Filler particles are generally aggregated into clus-
ters. The filler clusters result from an aggregation
process in the rubber matrix subject to strong physi-
cal bonding between filler particles. Possible aggre-
gation mechanisms are percolation or kinetical
aggregation that both lead to a self-similar cluster
with a disordered fractal-like structure. In case of
high filler concentrations c with overlapping neigh-
boring clusters, the following scaling law for hydro-
dynamic amplification factor was found by Huber
and Vilgis17:

X ¼ 1þ const � n
a

� �dw�df

c
2

3�df : (5)

Here n is the cluster size, a is the particle size, df is
the fractal dimension, and dw is the anomalous diffu-
sion exponent of the clusters. Equation (5) shows
that the strain amplification factor increases with fil-
ler concentration and cluster size according to a
power law with an exponent that depends on the
fractal structure of the clusters.

This result, eq. (5), was combined with a concept of
stress-induced filler cluster breakdown, e.g., the model
developed by Witten et al.18 that considers the break-
down of self-similar filler clusters under lateral com-
pression of the bulk polymer. With increasing strain
of a virgin sample, a stress-induced breakdown of fil-
ler clusters takes place during which the size of the
clusters decreases. This process is almost irreversible,
since the gaps between broken filler clusters are filled
up with elastomeric matrix during the material defor-
mation. The elastomer is expected to be strongly
bonded to the filler surface and, hence, it hinders re-
aggregation of the clusters when the stress relaxes
during the unloading. The relevant strain-amplifica-
tion factor X becomes a decreasing function of the
external strain and is expressed as a function X(L) of
a scalar strain variable L:

XðLÞ ¼ X1 þ ðX0 � X1Þð1þ LÞ�a; (6)

L ¼ ð1þ eÞ2 þ 2

ð1þ eÞ
� �1=2

�1; (7)

where parameters X0 and X1 denote cluster sizes
for zero and infinite strain limits, a is a rate of clus-
ter breakdown.

An information on X for each filled rubber is
obtained from stress–strain measurements. During
the first stretching of a filler-reinforced network, the
amplification factor decreases with strain in accord-
ance with eqs. (6) and (7) and at maximal applied
external stress, when L attains the value of Lmax, it

diminishes to X(Lmax). On repeated stretching to
emax, the uniaxial stress–stretch ratio dependence
becomes stabilized for strains not exceeding emax,
since the amplification factor X(Lmax) has reached a
constant value for all strains not exceeding the pre-
strain emax (i.e., for e < emax, L < Lmax). Thus, the de-
pendency of the amplification factor on the strain is
different for the first deformation of a virgin sample
and for subsequent deformations, leading to the
characteristic stress-softening.
Klueppel16 measured uniaxial stress–stretch ratio

dependences of filled styrene-butadiene and ethylene-
propylene-diene terpolymer rubbers under various pre-
strains. By fitting the data by eqs. (3), (4), (6), and (7) the
six parameters entering into these equations were
determined. The fitting procedure was as follows: three
parameters Gc, Ge, and d of eq. (3) and the value of Xmax

for each emax were obtained from unloading curves
with maximal strain emax. By approximation of Xmax as
a function of emax with eqs. (6) and (7), the parameters
X0, X1, and a were obtained. The parameters were
checked for stress–stretch ratio curve of virgin sample
up to its failure. With increasing filler volume content,
the parameters Gc, Ge, X0, X1, and a showed a tend-
ency to increase. Although in the limit of infinite stretch
ratio, the theoretically expected minimal admissible
value of X1 should not be lower than unity, for some
systems, values lower than unity or even negative were
found. However, in the experimental range of stretch
ratio, the strain amplification factor X always remained
reasonably higher than the physically realistic value of
unity. It should be noted that obtaining the parameters
from the unloading curves supposes that the effect of
relaxation processes on deformational behavior is
negligible.

APPROXIMATION PROCEDURE AND RESULTS

A procedure of the model parameters identification
for the investigated materials was the following: (i)
the experimental stress–stretch ratio curves of
unfilled rubber were approximated by eq. (3) to
obtain the parameters Gc, Ge, and d; (ii) these param-
eters were used as the initial values in subsequent
obtaining of three parameters Gc, Ge, and d, charac-
terizing elastic properties of rubber in the composite
(filler reinforced rubber), and three parameters X0,
X1, and a, characterizing the filler cluster break-
down, by approximation of stress–stretch ratio
curves of filled rubber for each filler volume content
c with eqs. (3), (4), (6), and (7). To be not unreason-
able, values X1 � 1, X0 � 1, and a, as well as pa-
rameters Gc, Ge, and d, were positively defined.
For simultaneous estimation of three parameters

Gc, Ge, and d of unfilled rubber and further six pa-
rameters Gc, Ge, d, X0, X1, and a of filled rubber, at
each c, a SIMPLEX algorithm with objective function
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in the form of the sum of the squared differences
between experimental and predicted data was used.
The advantage of this objective function is that it
gives the optimal solution with the smallest possible
residual.

The results of approximation of three experimental
stress–stretch ratio curves for each c are shown in
Figure 1. They are in a good agreement with experi-
mental data. The approximation parameters are
listed together in Table I.

DISCUSSION

To check the applicability of the above model, eqs.
(3) and (4) along with eqs. (6) and (7), with parame-
ters obtained from quasistatic loading tests up fail-
ure (Fig. 1), cyclic loading–unloading tests with
increasing maximal stretch ratio (Fig. 2) were used.
In accordance with the model, the hydrodynamic
amplification factor X(L) characterizes the filler clus-
ter size in the rubber. Its irreversible change during
active loading and constant value during unloading
and repeated loading up to the stretch ratio, which
does not exceed the level in previous cycle, was
postulated in the model. The calculated hydrody-
namic amplification factor as a function of stretch ra-

tio X(k) for three considered loading–unloading
cycles is shown in Figure 3 on the example of rubber
filled with surface untreated particles for c ¼ 0.2.
The largest change of X is observed during the first
cycle.
Comparison of the calculated stress–stretch ratio

curves with the experimental (Fig. 2) shows their
similarity. But more careful consideration reveals
some discrepancies. For all three cycles with
increased maximal stretch ratio, the hysteresis loops
and residual strains, i.e., strains at zero stresses, in
calculated curves are smaller than in the experimen-
tal. The character of discrepancies is the same for
all considered composites: with different c, for
untreated and treated surface of filler particles. In
the experimental unloading curves, the residual
strain depends on the maximal stretch ratio in the
cycle. The residual strain after loading–unloading
cycle may be conditioned by relaxation processes
and/or by a plastic flow in the structure, which
were not accounted in the model.
Investigation of creep and creep recovery proc-

esses in the materials8 showed that their

TABLE I
The Approximation Parameters of Stress–Stretch Ratio Curves of Unfilled and Filled Rubber by Eqs. (3), (4), (6),

and (7)

Filled

Unfilled Surface treated filler particles Surface untreated filler particles

c 0 0.0886 0.1382 0.2018 0.0898 0.141 0.208
Gc (MPa) 0.19 0.067 0.162 0.387 0.0442 0.144 0.196
Ge (MPa) 0.232 0.912 1.03 1.3 0.672 0.631 1.02
d�103 8.79 4.08 1.36 0.571 3.72 0.931 0.431
X0 13.9 20.8 31.5 13.9 19.6 34.1
(X1 � 1) � 103 0.432 0.32 0.09461 0.405 0.436 0.114
a 1.65 1.41 1.34 1.65 1.26 1.28

Figure 3 Calculated strain amplification factor as a func-
tion of stretch ratio for three loading–unloading cycles of
rubber filled with surface untreated particles for c ¼ 0.208.

Figure 4 Instantaneous stretch ratio after stress is
removed for creep recovery test of rubber unfilled (*) and
filled with surface untreated (*, h, ~) and treated (l, n,
~) particles for c ¼ 0.0898 (*), 0.141 (h), 0.208 (~), and
0.0886 (l), 0.1382 (n), 0.2018 (~).
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deformational properties are viscoelastic. For creep
recovery, the stretch ratio decreases with time t in
accordance with the law

kveðtÞ ¼ kve0 t�k1 ; if t � ts

kveðtÞ ¼ kve0 tk2�k1
s t�k2 ; if t > ts

; (8)

where kve0 is instantaneous stretch ratio after the
stress is removed, ts � 400 s is characteristic time, k1
and k2 are rates of the process at different stages.

Both the kve0 and rates k1, k2 increase with the
increase of filler volume content c and maximal
stretch ratio kmax. As an example, the values of kve0 for
various kmax and c are shown in Figure 4. They form
two different lines: for rubber filled with surface
untreated and treated particles, respectively. The val-
ues of kve0 for neat rubber are outside of these lines.
The same character was revealed for rates k1 and k2 as
the functions of maximal stretch ratio kmax. Thus,
viscoelastic behavior of filled rubber differs from such
of neat rubber and depends on surface treatment of
filler particles. As surface treatment of filler particles
changes the structure and properties of interlayer,7

one can propose that the interlayer is responsible for
viscoelastic properties of filled rubber.

Using eq. (8), the viscoelastic strain as the function
of maximal stretch ratio and filler volume content
was calculated and added to elastic strain in eqs. (3)
and (7) to calculate the stress–strain response of
filled rubber under cyclic loading–unloading. An
example of the calculation result compared with the
experimental data is shown in Figure 5. Taking into
account the effect of viscoelasticity noticeably
improves the calculation results: the hysteresis loops
and residual strain enlarge. The effect is well shown
for small stretch ratios.

Let’s consider the model parameters with respect
to composite structure. There are three parameters

Gc, Ge, and d, characterizing rubber both unfilled
and in the composite. The parameters Gc, Ge, and d
determine an elastic modulus of rubber as

E ¼ dr
dk

�!
k!1

3½Gcð1� 2dÞ þ Ge�: (9)

For parameter Gc, which is proportional to the
density of network junctions, the dependence on fil-
ler volume content is nonmonotonic: small decrease
changes by increase (Table I). The increase is larger
for the rubber filled with surface treated particles
compared to the rubber filled with surface untreated
particles. This fact indicates that the surface treated
filler particles act as additional crosslinks and the
number of crosslinks increases with filler volume
content. The parameter Ge, which is proportional to
the entanglement density of the rubber, increases
with c: practically linearly for rubber filled with sur-
face treated particles, but more slowly for rubber
filled with surface untreated particles. For the latter
composite, the parameter d, which is proportional to
the portion of elastically active entanglements and
inversely to number of statistical chain segments
between two subsequent entanglements, diminishes
with c more rapidly. In accordance with eq. (9), the
changes of parameters Gc, Ge, and d result in change
of the elastic modulus E: it increases with c (Fig. 6).
The increase is more essential in case of rubber filled
with surface treated filler particles.
Considering the shear modulus G as the function

of filler volume content for carbon black filled SBR,

Figure 5 Stress as a function of stretch ratio for two
loading–unloading cycles of rubber filled with surface
untreated particles for c ¼ 0.208; solid lines are experimen-
tal data, dotted lines are calculation by eqs. (3), (4), (6),
and (7) taking into account viscoelastic strain, eq. (8).
[Color figure can be viewed in the online issue, which is
available at wileyonlinelibrary.com.]

Figure 6 Elastic modulus of filled rubber as a function of
filler volume content for filler particles with untreated (*)
and treated (l) surface: dots are calculation by eq. (9)
with approximated values of Gc, Ge, and d (Table I); lines
are calculations by eq. (10) with f ¼ 1.44, (1) 2.19, (2), and
f(c) (3,4) with Vbm/Vc as the function of c (30, 40).
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Guido Raos19 concluded that reinforcement can be
qualitatively interpreted on the basis of simple
hydrodynamic effect. He used the effective filler vol-
ume content ceff ¼ fc in the modified Einstein for-
mula, namely Guth–Gold expression:

G� G0

G0
¼ 2:5ceff þ 14:1c2eff; (10)

where G0 is shear modulus of unfilled rubber.
The effectiveness factor f characterizes the rubber

inside the aggregates,20 the entrapped rubber, which
is effectively shielded from stresses experienced by
the bulk rubber. Thus, the amount of rubber bearing
the stresses imposed upon the sample is reduced by
the amount of entrapped rubber. It is further
assumed that part of the entrapped rubber volume
will be again elastically active under conditions of
high strain.

In our case, a description of elastic modulus
~E ¼ E�E0

E0
, where E0 is the elastic modulus of unfilled

rubber, as a function of c using equation analogous
to eq. (10) (lines 1 and 2 in Fig. 6) gave values of
effectiveness factor 1.14 and 2.19 for rubber filled
with particles without and with surface treatment,
respectively. So, the effectiveness factor f depends
on rubber–filler interaction. The aforesaid values of f
are averages for all considered c. More precise
description of ~EðcÞ (lines 3 and 4 in Fig. 6) gives f as
a function of c. In accordance with the definition,
f ¼ 1þ Vbm

Va
, where Vbm and Va are volumes of

entrapped rubber and filler, respectively. The calcu-
lated value of Vbm

Va
¼ f � 1 decreases with c (lines 30

and 40 in Fig. 6). It may be conditioned by the fact
that in the composites with large c the filler particles
contact with each other without rubber interlayer.
For rubber filled with surface untreated particles,
the relative volume content of entrapped rubber is
relatively small. The applicability of eq. (10) type for
description of the elastic modulus of composites
considered in present work confirms that reinforce-
ment effect for filled rubber can be interpreted on
the basis of simple hydrodynamic effect. This is true
for small stretch ratios.

In addition to elastic characteristics of the rubber,
there are three parameters X0, X1, and a, character-
izing filler network in the composite during its
stretching. As seen from Table I, parameter X0, char-
acterizing the initial size of filler cluster n0

a [eq. (5)],
increases practically linearly with c: 2

3�df
¼ 1. Thus, a

value of fractal dimension, df ¼ 1, is obtained. Pa-
rameters X1, characterizing the minimal cluster size,
and a, characterizing the rate of cluster destruction,
decrease with c. Changes of X1 with c are very
small, the parameter is practically equal to 1.

Using the filler network parameters X0, X1, and
a, a value of n0

a can be evaluated from eq. (5)

ln
n0
a

� �
¼ 1

dw � df
ln

X0 � 1

X1 � 1
; (11)

where dw � df ¼ a
b.

For b ¼ 1, the initial size of filler cluster as a func-
tion of filler volume content is depicted in Figure
7(a). For small c, the initial size of filler cluster does
not depend on filler particles surface treatment.
With increase of c the dependence becomes noticea-
ble: the initial sizes of filler cluster for rubber filled
with surface treated particles are smaller then for
untreated.
There is an apparent inconsistency in the results

of initial cluster size n0
a and reinforcement effective-

ness factor f for rubber filled with surface untreated
and treated particles. To overcome it, one may con-
clude the following: in the latter composite, despite
of smaller cluster size, more rubber is entrapped
and strongly bounded with filler particles than in
the former case. This is in line with the viscoelastic
strain of filled rubber, which is smaller in the case of
surface treated filler particles (Fig. 4).
In accordance with eqs. (6) and (7), dependence of

hydrodynamic amplification factor X on stretch ratio
is determined by parameters X0, X1, and a. Their
values change with filler volume content (Table I).
So, functions X(L) are different for various c. In Fig-
ure 7(b), X as a function of stretch ratio k is plotted
for various c to compare the functions X(k) with
stress–stretch ratio curves in Figure 1(a,b). It may be
seen from the graphs that X does not reach the value
of X1 at the material failure; ultimate accessible val-
ues of X are different for various c. For small filler
volume content, the hydrodynamic amplification fac-
tor does not depend on filler particles surface treat-
ment. With increase of c, the dependence becomes
noticeable: values of function X(L), or X(k), for

Figure 7 (a) Initial cluster size as a function of filler vol-
ume content for rubber filled with untreated (*) and
treated (l) particles surface; (b) Strain amplification factor
as a function of stretch ratio for rubber filled with various
filler volume contents c ¼ 0.0886, (1) 0.0898 (10), 0.1382, (2)
0.1411 (20), 0.208, (3) 0.2018 (30) with (a) treated (1,2,3) and
(b) untreated (10, 20, 30) filler particles surfaces.
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rubber filled with surface untreated particles are
larger than for treated. To compare the obtained
data for hydrodynamic amplification factor as a
function of strain, the dependencies X(k), corre-
sponding to various c, can be normalized with their
maximal value X0. The procedure results in a com-
mon line for all considered composites: with various
c, without and with filler particles surface treatment.
Thus, the same process of filler cluster breaking in
composites with various c came to light using the
above considered identification of parameters of the
model by approximation of the stress–stretch ratio
curves up to material failure.

Comparing the graphs in Figure 7(b) with graphs in
Figure 4, one can conclude that the process of cluster
destruction is accompanied by the increase of time-
dependent strain and the rates of relaxation process,
underlying the creep recovery. As the interlayer is re-
sponsible for viscoelastic behavior, one may conclude
that the interlayer in rubber filled with particles with-
out surface treatment is more compliant and allows
larger strains in comparison with the interlayer in
rubber filled with surfaces treated particles.

CONCLUSIONS

Testing of silica filled SBR with various filler volume
content without and with filler particles surface
treatment under uniaxial tension, and analyzing the
test results using the Klueppel–Schramm model of
hyperelasticity and stress softening of filled rubber
showed that:

• The model is applicable for description of the
stress–stretch ratio curves during active loading
process; description of unloading process with
the same parameters has a systematic error,
which can be diminished by accounting for the
viscoelastic strains of the composites;

• Dependence of elastic modulus on filler volume
content follows Guth–Gold equation, confirming
the hydrodynamic nature of rubber reinforce-

ment; the effectiveness factor increases with
treatment of filler particles surface with cou-
pling agent;

• Hydrodynamic amplification factor as a func-
tion of stretch ratio is dependent on filler vol-
ume content, as the initial cluster size and rate
of cluster decay depend on filler volume con-
tent; a decrease of hydrodynamic amplification
factor with the increase of stretch ratio correlate
with the increase of viscoelastic strain;

• Dependence of hydrodynamic amplification fac-
tor on filler surface treatment was revealed for
largest filler volume content.
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